Two homologous protein S-acyltransferases, PAT13 and PAT14, cooperatively regulate leaf senescence in Arabidopsis.

نویسندگان

  • Jianbin Lai
  • Boya Yu
  • Zhendan Cao
  • Yanming Chen
  • Qian Wu
  • Jingyi Huang
  • Chengwei Yang
چکیده

Lipid modification on the cysteine residues of proteins, known as S-palmitoylation or S-acylation, regulates the subcellular localization and the function of proteins. S-acylation is catalysed by a group of protein acyltransferases (PATs) with a conserved Asp-His-His-Cys (DHHC) motif. The molecular function of S-acylation has been studied in details in yeast and mammalian cells, but its role in plant cells remains unclear. Here it is reported that the expression of two homologous protein acyltransferases- PAT13 and PAT14 -was moderately increased in the older leaves of Arabidopsis. The double mutant of PAT13 and PAT14 displayed a severely early leaf senescence phenotype. The phenotype was complemented by PAT13 or PAT14 overexpression in the double mutant, confirming the roles of PAT13 and PAT14 in this process. Furthermore, the levels of reactive oxygen species (ROS) and cell death were dramatically induced in the double mutant. To investigate the molecular functions of PAT13 and PAT14, their potential S-acylation substrates were predicted by bioinformatics methods. The subcellular localization and S-acylation of a candidate substrate NITRIC OXIDE ASSOCIATED 1 (NOA1), which also plays a role in leaf senescence control, were partially disrupted in the protoplasts of the double mutant. Impairment of S-acylation on NOA1 affected its subcellular localization and its function in leaf senescence regulation. Conclusively, protein S-acyltransferases PAT13 and PAT14 are involved in leaf senescence control- possibly via NOA1 S-acylation-, providing a new sight into the regulation mechanism of S-acylation in leaf senescence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Precocious leaf senescence by functional loss of PROTEIN S-ACYL TRANSFERASE14 involves the NPR1-dependent salicylic acid signaling

We report here that Arabidopsis PROTEIN S-ACYL TRANSFERASE14 (PAT14), through its palmitate transferase activity, acts at the vacuolar trafficking route to repress salicylic acid (SA) signaling, thus mediating age-dependent but not carbon starvation-induced leaf senescence. Functional loss of PAT14 resulted in precocious leaf senescence and its transcriptomic analysis revealed that senescence w...

متن کامل

Molecular genetic control of leaf lifespan in plants - A review

Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...

متن کامل

A soybean dual-specificity kinase, GmSARK, and its Arabidopsis homolog, AtSARK, regulate leaf senescence through synergistic actions of auxin and ethylene.

As the last stage of leaf development, senescence is a fine-tuned process regulated by interplays of multiple signaling pathways. We have previously identified soybean (Glycine max) SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (SARK), a leucine-rich repeat-receptor-like protein kinase from soybean, as a positive regulator of leaf senescence. Here, we report the elucidation of the molecular mechan...

متن کامل

A Soybean Dual-Specificity Kinase, GmSARK, and Its Arabidopsis Homolog, AtSARK, Regulate Leaf Senescence through Synergistic Actions of Auxin and Ethylene1[C][W][OA]

As the last stage of leaf development, senescence is a fine-tuned process regulated by interplays of multiple signaling pathways. We have previously identified soybean (Glycine max) SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (SARK), a leucine-rich repeat-receptor-like protein kinase from soybean, as a positive regulator of leaf senescence. Here, we report the elucidation of the molecular mechan...

متن کامل

Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis.

Numerous endogenous and environmental signals regulate the intricate and highly orchestrated process of plant senescence. Ethylene is a well-known inducer of senescence, including fruit ripening and flower and leaf senescence. However, the underlying molecular mechanism of ethylene-induced leaf senescence remains to be elucidated. Here, we examine ethylene-insensitive3 (EIN3), a key transcripti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 66 20  شماره 

صفحات  -

تاریخ انتشار 2015